متوسط التحرك البسيط مشاكل استخدام المتوسط المتحرك البسيط كأداة للتنبؤ: المتوسط المتحرك يتتبع البيانات الفعلية، ولكنه دائما متخلف عن ذلك. المتوسط المتحرك لن يصل أبدا إلى قمم أو وديان من البيانات الفعلية 1515 ينعم البيانات لا أقول لك كثيرا عن المستقبل ومع ذلك، هذا لا يجعل المتوسط المتحرك عديمة الفائدة 151 تحتاج فقط أن تكون على بينة من مشاكلها. سليد دسكريبتيون أوديو ترانسكريبتيون لتلخيص، لمتوسط متحرك بسيط أو متوسط متحرك واحد، شهدنا بعض المشاكل مع استخدام المتوسط المتحرك البسيط كأداة للتنبؤ. المتوسط المتحرك هو تتبع البيانات الفعلية، ولكن متخلفة دائما وراء ذلك. المتوسط المتحرك لن يصل أبدا إلى قمم أو وديان البيانات الفعلية 1515 ينعم البيانات، وأنه حقا لا أقول لك الكثير عن المستقبل، لأنه هو ببساطة التنبؤ فترة واحدة مقدما، ومن المتوقع أن تمثل أفضل قيمة للفترة المقبلة، فترة واحدة مقدما، لكنه لا اقول لكم أبعد من ذلك بكثير. وهذا لا يجعل متوسط متحرك بسيط عديمة الفائدة 151 في الواقع ترى المتوسطات المتحركة بسيطةالتصحيح من قبل تقنيات تمهيد هذا الموقع هو جزء من جافا سكريبت E-لابس الكائنات التعلم لاتخاذ القرارات. يتم تصنيف جافا سكريبت أخرى في هذه السلسلة ضمن مجالات مختلفة من التطبيقات في قسم مينو في هذه الصفحة. سلسلة زمنية هي سلسلة من الملاحظات التي يتم ترتيبها في الوقت المناسب. ومن العوامل المتأصلة في جمع البيانات المأخوذة على مر الزمن شكل من أشكال الاختلاف العشوائي. هناك طرق للحد من إلغاء التأثير بسبب الاختلاف العشوائي. التقنيات المستخدمة على نطاق واسع هي تمهيد. وتكشف هذه التقنيات، عندما تطبق بشكل صحيح، عن الاتجاهات الكامنة بشكل أوضح. أدخل السلاسل الزمنية بالصفوف في التسلسل، بدءا من الزاوية العلوية اليسرى، والمعلمة (المعلمات)، ثم انقر على الزر حساب للحصول على التنبؤ قبل فترة واحدة. لا يتم تضمين صناديق فارغة في الحسابات ولكن الأصفار هي. في إدخال البيانات الخاصة بك للانتقال من خلية إلى خلية في مصفوفة البيانات استخدام مفتاح تاب لا السهم أو إدخال مفاتيح. ملامح السلاسل الزمنية، والتي يمكن كشفها من خلال فحص الرسم البياني. مع القيم المتوقعة، والسلوك المتبقي، والنمذجة حالة التنبؤ. المتوسطات المتحركة: تعد المتوسطات المتحركة من بين أكثر التقنيات شيوعا في المعالجة المسبقة للمسلسلات الزمنية. وهي تستخدم لتصفية الضوضاء البيضاء العشوائية من البيانات، لجعل السلاسل الزمنية أكثر سلاسة أو حتى للتأكيد على بعض العناصر الإعلامية الواردة في السلاسل الزمنية. الأسي تجانس: هذا هو مخطط شعبية جدا لإنتاج سلسة سلسلة الوقت. في حين أن المتوسطات المتحركة يتم ترجيح الملاحظات السابقة بالتساوي، فإن التسييل الأسي يعين الأوزان المتناقصة بشكل كبير مع تقدم الملاحظة. وبعبارة أخرى، تعطي الملاحظات الأخيرة وزنا أكبر نسبيا في التنبؤ من الملاحظات القديمة. ضعف الأسي تجانس أفضل في التعامل مع الاتجاهات. الثلاثي الأسي تجانس أفضل في التعامل مع اتجاهات القطع المكافئ. متوسط متحرك مرجح أسي مع ثابت التمهيد a. يقابل تقريبا متوسط متحرك بسيط للطول (أي الفترة) n، حيث تكون a و n مرتبطة بما يلي: 2 (n1) أو n (2 - a) a. وهكذا، على سبيل المثال، فإن المتوسط المتحرك المرجح ألسيا مع ثابت التمهيد يساوي 0.1 من شأنه أن يتوافق تقريبا إلى 19 المتوسط المتحرك اليوم. والمتوسط المتحرك البسيط لمدة 40 يوما من شأنه أن يتوافق تقريبا مع متوسط متحرك مرجح أسي مع ثابت ثابت يساوي 0.04878. هولتس الخطي الأسي تمهيد: لنفترض أن السلسلة الزمنية غير الموسمية ولكن لا عرض الاتجاه. طريقة هولتس تقدر كل من المستوى الحالي والاتجاه الحالي. لاحظ أن المتوسط المتحرك البسيط هو حالة خاصة للتلطيف الأسي عن طريق تحديد فترة المتوسط المتحرك إلى الجزء الصحيح من ألفا (ألفا) ألفا. بالنسبة لمعظم بيانات الأعمال تكون معلمة ألفا أصغر من 0.40 فعالة في كثير من الأحيان. ومع ذلك، يمكن للمرء إجراء بحث شبكة من مساحة المعلمة، مع 0.1 إلى 0.9، مع زيادات من 0.1. ثم أفضل ألفا لديه أصغر خطأ المطلق يعني (خطأ ما). كيفية مقارنة عدة طرق للتجانس: على الرغم من وجود مؤشرات رقمية لتقييم دقة تقنية التنبؤ، فإن النهج الأكثر انتشارا هو استخدام مقارنة مرئية لعدة تنبؤات لتقييم دقتها والاختيار من بين مختلف أساليب التنبؤ. في هذا النهج، يجب على المرء أن رسم (باستخدام، على سبيل المثال إكسيل) على نفس الرسم البياني القيم الأصلية لمتغير سلسلة زمنية والقيم المتوقعة من عدة أساليب التنبؤ المختلفة، مما يسهل المقارنة البصرية. قد ترغب في استخدام التوقعات السابقة من قبل تقنيات تجانس جافاسكريبت للحصول على القيم السابقة التنبؤ على أساس تقنيات تمهيد التي تستخدم معلمة واحدة فقط. هولت، وطرق الشتاء تستخدم اثنين وثلاثة معلمات، على التوالي، وبالتالي فإنه ليس من السهل مهمة لتحديد الأمثل، أو حتى بالقرب من القيم المثلى من قبل التجربة والأخطاء للمعلمات. ويؤكد التمهيد الأسي المفرد على المنظور القصير المدى الذي يحدد المستوى للمراقبة الأخيرة ويستند إلى شرط عدم وجود اتجاه. إن الانحدار الخطي، الذي يناسب خط المربعات الصغرى على البيانات التاريخية (أو البيانات التاريخية المحولة)، يمثل المدى الطويل، الذي يشترط الاتجاه الأساسي. هولتس الخطي الأسي تجانس يلتقط المعلومات حول الاتجاه الأخير. والمعلمات في نموذج هولتس هي معلمة المستويات التي ينبغي أن تنخفض عندما يكون مقدار تغير البيانات كبيرا، وينبغي زيادة معلمة الاتجاهات إذا كان اتجاه الاتجاه الأخير مدعوما بالعوامل المسببة لبعض العوامل. التنبؤ على المدى القصير: لاحظ أن كل جافاسكريبت في هذه الصفحة يوفر توقعات خطوة واحدة. للحصول على توقعات من خطوتين. ببساطة إضافة القيمة المتوقعة إلى نهاية لك البيانات سلسلة الوقت ثم انقر على نفس زر حساب. يمكنك تكرار هذه العملية لعدة مرات من أجل الحصول على التوقعات اللازمة على المدى القصير. في الممارسة، فإن المتوسط المتحرك سيوفر تقديرا جيدا لمتوسط التسلسل الزمني إذا كان المتوسط ثابتا أو ببطء في التغير. وفي حالة المتوسط الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط الضوضاء العشوائية من التوزيع العادي مع متوسط الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط المتوسط المتحرك للمتوسط في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط المتحرك يقلل من الملاحظات نظرا لأن المتوسط يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط المتحرك. التحيز عندما يكون المتوسط يزداد سلبيا. أما بالنسبة للمتوسط المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط المتوسط المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط التقدير المتحرك إلى افتراض متوسط ثابت، والمثال له اتجاه خطي في المتوسط خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط المتحرك البالغ 5 من المتوسط المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط الانحراف (ماد) في الخلايين E6 و E7 على التوالي.
No comments:
Post a Comment